
Write (or rewrite) your critical Lambda functions in Rust to boost performance and reduce cost

What is Rust?
Rust is a modern compiled language that 
excels in creating high-performance, 
memory-safe applications. Rust is a great fit 
for performance critical Serverless use cases 
with Lambda offering native C/C++ level 
performance with safety.

Why use Rust?

• Performance: Rust’s design prioritizes 
efficiency, giving execution times and a 
memory footprint compatible to native 
C/C++. Rust performs significantly better 
than other application language stacks 
(e.g. Python, Node.js, C# and Java)

• Safety: Rust’s focus on memory safety 
mitigates common bugs like null pointer 
dereferencing and buffer overflows 
prevalent in C and C++.

• Correctness: Rust’s type system highlights 
fallible calls and data absence, aiding 
developers in identifying and handling 
edge cases explicitly.

• Productivity: With a robust type system, 
refined compiler, and extensive developer 
tool ecosystem, Rust empowers teams to 
achieve more.

Lambda & Rust
Rust is a great choice for (re)implementing 
performance  critical Lambda functions. Given 
that the lambda pricing model is:

Cost = Allocated Memory x Execution Time

Growth of Rust
The global Rust developer community 
surged to approximately 2.8 million in 
2023. Major tech players like Google, 
Microsoft and AWS are actively adopting 
Rust for their critical infrastructure.

fourTheorem were early adopters of 
Rust and are active in the Rust 
developer community.

Low-risk adoption
Lambda functions offer an ideal starting 
point for Rust adoption. Small and self-
contained, they often have minimal 
dependencies and consist of only a few 
hundred lines of code. Migrating a single 
Lambda function to Rust is a low-risk 
investment, allowing you to test the 
waters without committing to a massive 
rewrite.

Key Benefits of Rust on Lambda

• Improved performance - Rust can deliver a significant boost for 
performance critical Lambda functions slashing execution time.

• Lower Cost - Rust’s efficient execution characteristics and low 
memory footprint can provide a significant cost reduction for highly 
used Lambda functions.

• Reduced Cold Start Impact  - Thanks to its performance 
characteristics, Rust can significantly reduce the cost of cold-starts. 
Typically, Rust cold starts are in the order of 10-50ms, as opposed 
to 500-2000ms generally observed in Python, JavaScript and Java.

• Reduced Carbon Footprint  - By adopting Rust for your 
performance critical Lambdas, you’re not just optimizing for 
performance - you’re actively contributing to more sustainable 
cloud deployments.

Have a project you’d like to discuss or want to know more?                     +353 21 206 3101             hello@fourtheorem.com             www.fourtheorem.com 

• Advanced Tier Services
• AWS Lambda Delivery
• AWS ECS Delivery
• Migration Services
• Well Architected

🚀 16x faster cold starts

⚡ 3.5x less memory

💰 3x cheaper

Full details: oidc-authorizer-benchmark

Benchmark Rust vs. Python

https://github.com/lmammino/oidc-authorizer-benchmark

